PV-SQL: Synergizing Database Probing and Rule-based Verification for
Text-to-SQL Agents

Yuan Tian
Purdue University
West Lafayette, IN, USA

Abstract

Text-to-SQL systems often struggle with deep
contextual understanding, especially for com-
plex queries with many subtle requirements.
We present PV-SQL, an agentic method
that addresses text-to-SQL generation fail-
ure through two complementary components,
Probe and Verify. On the one hand, PV-SQL
iteratively generates probe queries to retrieve
concrete records from the database, resolving
ambiguities related to value formats, column se-
mantics, and inter-table relationships, thereby
enabling deeper contextual understanding. On
the other hand, PV-SQL leverages a rule-based
method to extract and construct a checklist
of verifiable conditions, which serves as ex-
ecutable test cases for iterative SQL refinement.
This verification loop effectively reduces miss-
ing constraints in the generated query. Experi-
ments on the BIRD benchmarks show that PV-
SQL outperforms the best text-to-SQL baseline
by 6% in execution accuracy and 20.8% in valid
efficiency score while consuming fewer tokens.

1 Introduction

Text-to-SQL has emerged as a critical capability
for democratizing database access, enabling non-
experts to query structured data using natural lan-
guage (Yu et al., 2018; Li et al., 2024). Despite
remarkable progress driven by large language mod-
els (LLMs), existing systems face persistent chal-
lenges: (1) schema understanding, comprehend-
ing table relationships and column semantics; (2)
value grounding, mapping natural language terms
to exact database values, where schema informa-
tion alone may not help; and (3) constraint sat-
isfaction, ensuring the generated SQL faithfully
captures all semantics expressed in the question.
Consider the question (Figure 1): “What Cali-
fornia orders customers were shipped late in 2023?”
A text-to-SQL system must resolve multiple ambi-
guities: Is “California” stored as the full name or
abbreviated as “CA”? How is “late” represented?

Tianyi Zhang
Purdue University
West Lafayette, IN, USA

What California orders customers were shipped late in
2023?

| Is california the value used in DB? ‘

How to represent late? |
. ?
\ It’s hard to remember everything when generating SQL. \

PV-SQL Database Probing &

What|California orders customers
were shipped late in 20237

Enriched

State = ‘CA’
Context

Checklist

Include 2023 | (¥
A &

IEGES ER © I fully understand

the context, and all

the requirements

are verified. D

Verify :

Repair @

sQL

Figure 1: An example of how PV-SQL effectively
solves a text-to-SQL task.

Does the database have a “late” flag? Answering
these questions requires examining actual database
values, yet existing methods typically rely only on
schema descriptions, which do not contain such
information.! Our empirical study (Section 3.2) re-
veals that approximately 41% of failed tasks stem
from a misunderstanding of the database.

Previous work mainly uses static methods to en-
rich the context based on schema linking or seman-
tic enrichment (Li et al., 2023; Ren et al., 2024;
Caferoglu and Ulusoy, 2024; Lee et al., 2025).
However, they only rely on pre-defined heuristics
and do not adaptively explore database based on the
question’s needs. Furthermore, even with a com-
plete understanding of the database context, SQL

"For example, Data Definition Language (DDL) defines
the properties of a database by specifying data types, primary
keys, and foreign keys, but does not mention database values.

generation inherently lacks a verification mecha-
nism, such as test cases, to ensure that the generated
SQL correctly meets all requirements. Models can
easily generate syntactically correct SQL queries
that silently return wrong answers, especially for
complex queries. Although existing work leverages
strategies such as refinement, candidate selection,
or LLLM-based verifications (Askari et al., 2024,
Cen et al., 2024; Xu et al., 2025; Ni et al., 2023;
Gong et al., 2025), a lack of reliable verification
mechanisms remains.

To address these challenges, we propose PV-
SQL, an agentic text-to-SQL method with two
complementary components (Figure 1): (1)
Database Probing: Rather than generating SQL
based on schema alone, PV-SQL can generate and
execute probe SQL queries to discover insights
from database content, such as value formats, col-
umn semantics, and data distributions. (2) Ver-
ify and Repair: PV-SQL automatically extracts
rule-based verifiable constraints from the question
using pattern matching (e.g., requiring DISTINCT
for “unique”, LIMIT k for “top-k™), and iteratively
repairs the SQL until all constraints are satisfied.

These two components address complementary
failure types. As shown in Figure 1, Probe discov-
ers that “California” is stored as “CA” and “late”
means ship_date > required_date. Verify then
ensures that the generated SQL includes “CA” and
“2023” as required. Essentially, probing enhances
the input by enriching the context with concrete
evidence, while verification enhances the output by
ensuring desired semantic constraints are satisfied.

We evaluate PV-SQL by comparing it to seven
strong baselines on three evaluation benchmarks
across six base LLMs. PV-SQL achieves 65.12%
execution accuracy and 86.9 valid efficiency score
on BIRD, outperforming all baselines consistently
across all benchmarks. Ablation studies confirm
that both components contribute significantly.

2 Related Work

2.1 Text-to-SQL Methods

Large language models (LLMs) have transformed
text-to-SQL from specialized semantic parsing into
a general context understanding and reasoning chal-
lenge. DIN-SQL (Pourreza and Rafiei, 2023) de-
composes the task into sub-problems including
schema linking and query classification, while TA-
SQL (Qu et al., 2024) incorporates task alignment
to reduce hallucinations during schema linking and

logical synthesis. Some prompt-based frameworks
encourage logical checking or multi-path reason-
ing during synthesis (Talaei et al., 2024; Pourreza
et al., 2024). Recent multi-agent frameworks such
as MAC-SQL (Wang et al., 2024) employ special-
ized agents for decomposition, generation, and re-
finement. Despite these advances, Rahaman and
Gursoy (2024) show that even latest LLMs struggle
with deep semantic understanding.

In response to this challenge, PV-SQL does not
rely on schema alone or free-form self-correction.
It enhances LLMs’ semantic understanding by (1)
actively probing database content to resolve any
ambiguity, and (2) rule-based verification to ensure
that complex queries do not miss any semantics.

2.2 Context Enrichment

A large body of work improves text-to-SQL perfor-
mance by enriching the model input with additional
context, including semantic enrichment, entity link-
ing, schema linking, and information retrieval. Se-
mantic enrichment methods rewrite or augment the
NL query with schema hints or grounded descrip-
tions to make latent requirements explicit. Entity
linking and schema linking methods align mentions
in the NL query with database entities to reduce am-
biguity. For example, RESDSQL (Li et al., 2023)
prioritizes relevant schema elements using ranking-
enhanced encoders, while E-SQL (Caferoglu and
Ozgiir Ulusoy, 2025) directly enriches questions
with linked schema elements and candidate pred-
icates. Retrieval-augmented approaches such as
PURPLE (Ren et al., 2024) incorporate external
demonstrations, but rely on static retrieval based on
surface similarity. However, these methods mainly
focus on identifying relevant database entities (e.g,
tables and columns), but do not effectively address
the value grounding issue by mapping NL terms to
relevant database values.

In contrast, PV-SQL employs adaptive database
probing where the agent iteratively generates tem-
porary SQL queries to explore the database, en-
abling question-specific context enrichment that
similarity-based methods cannot achieve.

2.3 Verification-Driven Refinement

Verification-driven methods aim to improve text-to-
SQL performance by validating and refining gener-
ated queries using feedback signals.

Inspired by self-consistency (Wang et al., 2022),
one line of work samples multiple SQL candidates
and selects the final output based on comparison

or majority voting (Li and Xie, 2024; Liu et al.,
2025b; Chaturvedi et al., 2025). However, these
methods are computationally expensive and unre-
liable, as it requires to generate many SQL candi-
dates that may contain similar errors.

Another line of research conducts verification us-
ing external feedback signal, such as using the SQL
execution results or additional models (Madaan
et al., 2024; Askari et al., 2024; Cen et al., 2024,
Gong et al., 2025). Self-Refine (Madaan et al.,
2024) introduced the idea of using LLMs to cri-
tique their own outputs, but Huang et al. (2024)
show that LLMs struggle to self-correct without
external feedback. In code generation, test-driven
methods such as CodeT (Chen et al., 2022) and
Self-Debug (Chen et al., 2023) leverage generated
test cases to refine generation, showing that explicit
tests provide stronger verification than LLM self-
verification. However, SQL queries inherently lack
explicit test cases. LEVER (Ni et al., 2023) checks
whether a generated SQL query is runnable but
does not consider semantic correctness. TS-SQL
(Xu et al., 2025) asks the LLM to synthesize test
cases based on a translated Python version of the
SQL query and then uses test results to refine the
SQL. However, the test cases are still generated
by LLMs, which is prone to errors and can lead to
error accumulation. Furthermore, these methods
often introduce significant computational overhead.

In contrast, PV-SQL uses a rule-based verifier
that is reliable and lightweight. It leverages pattern-
matching to extract verifiable constraints from the
question, deterministically checks whether the SQL
satisfies them, and iteratively repair the SQL to
address violations. PV-SQL outperforms TS-SQL
by 7.8% execution accuracy on BIRD (Section 6).

3 Problem Statement

3.1 Task Definition

Given a natural language question (), a database
D with schema S, and optional evidence F (e.g.,
additional knowledge of the database), the text-to-
SQL task is to generate a SQL query S such that
executing S on D returns the correct answer to Q:

f+(Q,E,D,S) =S (D

We decompose the generation process into two
stages: (1) understanding u, which builds an in-
ternal representation of the question semantics and
database content, and (2) synthesis g, which trans-

lates this understanding into SQL. Formally:
u:(Q,E,D,§) >R, g:R—S (2

where R represents the model’s internal reasoning.
Errors arise when either stage fails:

¢ Database Misinterpretation (£p): The under-
standing u produces incorrect assumptions about
database content, e.g., value formats.

* Question Misinterpretation (£g): The under-
standing u misses or misinterprets semantic con-
straints expressed in Q).

 Synthesis Failure (£5): The synthesis ¢ fails to
translate a correct understanding R into SQL.

3.2 Empirical Study on Error Distribution

Recent works (Ding et al., 2025; Liu et al., 2025a)
highlight that ambiguity and context understand-
ing are significant issues in text-to-SQL generation.
Shen et al. (2025) shows that at least 30% of errors
derive from misunderstanding the database schema
or the natural language question. To understand
reasons behind LLM-generated text-to-SQL errors,
we analyze failed tasks from six LLMs (as dis-
cussed in Section 5.4) on the BIRD benchmark (Li
et al., 2024). Following previous works (Zheng
et al., 2023; Chirkova et al., 2025), we use GPT-40
as a judge to classify the error type. We manually
measured the LLM judge’s correctness in 100 tasks,
and the LLM judge achieved 88% accuracy. More
details are discussed in Appendix D.

As shown in Table 1, database misinterpretation
(€p) accounts for 41.3%, while question misin-
terpretation (£g) accounts for 24.8%. This sug-
gests that context misunderstanding significantly
contributes to generation errors. This motivates
our design: Probe addresses understanding er-
rors (Ep + £g) by grounding the model in actual
database content, which directly resolves database
misinterpretation and mitigates question misinter-
pretation that stems from incomplete context. Ver-
ify addresses synthesis errors (£g) by ensuring no
semantic constraints from the question are missed.

4 Method

Figure 2 illustrates PV-SQL. Given a question @,
evidence F, and database D with schema S, our
goal is to generate SQL query S that correctly an-
swers (). As motivated in Section 3, we address
understanding errors (£p +E&g) by Probe (Figure 2,
left) and synthesis errors (€g) by Verify (Figure 2,
right). Algorithm 1 presents the procedure.

Rules Eﬂ

Context
Insights Schema Question
Enrich
California is saved What

as “CA” in the state Column .. California
&= column Tables .. orders were
® “shipped late” means Foreign Keys ..| | Shipped late

in2023?

ship_date > required_date

&,
eel/[e
are
Probing SQL What’s missing in the context? 5_ o
=Y
What does “shipped @ Is “California” oy
late” mean? a DB value? Agent

Task Generate the corresponding SQL based on the question

6\ °)
% Verifier
4
i B
Constraints Feedback Syntax check o
EXPLAIN {SQL}
2023 {Previous SQL} Execution Check @
. is wrong since it

ship date > v (no error message)

required date | 1 condition for Constraint Check ©
“2023...”

CA X Include 2023?

v Include ship_date >... ?
+ Include CA?

\

Verify

SQL

What’s missing in the SQL? B, Repair

I should add a WHERE clause
to filter for the year 2023.

Figure 2: Overview of PV-SQL. Left: The agent generates probing SQL to discover database content and enriches
the context with insights. Top: Rule-based extraction identifies semantic constraints from the question. Right: A
rule-based verifier provides feedback for iterative repair until all checks pass.

Error Type

Database Misinterpretation (£p) 41.3%
Question Misinterpretation (£g) 24.8%
Synthesis Errors (£g) 33.9%

Table 1: Text-to-SQL Error distribution on BIRD.

4.1 Database Probing

The probing component iteratively queries the
database to discover value formats and column
semantics that the schema alone cannot reveal.
Rather than including all database values in the
prompt, which is infeasible for large databases
and lacks question-specificity, probing enables
uncertainty-driven exploration.

Probe Generation. At each iteration ¢, the
LLM receives question (), evidence F, schema
overview O, and probe history H;_ 1 =
{(p1,71),..-,(pt—1,7-1)}. The agent decides
whether to issue another probe or proceed to SQL
generation. If probing, it generates a SELECT query
with a LIMIT clause to retrieve a bounded sample
of relevant records.

Context Accumulation. After each probe execu-
tion, the agent interprets the results and summarizes
what it has learned, identifying which columns are
relevant to the question and extracting value map-
pings (e.g., “California” — “CA”). These insights
are accumulated into grounding context G, which
enriches the subsequent SQL generation with veri-
fied database knowledge.

4.2 Constraint Extraction

PV-SQL extracts verifiable constraints from the
question using pattern-matching rules. This design
offers two advantages: (1) reliability, as pattern
matching is simple and deterministic; (2) efficiency,
as no additional LLM calls are required. We priori-
tize precision over recall: missing some constraints
is acceptable, but false positives cause unneces-
sary repairs and introduce errors. We validate this
choice empirically in Section 6.3 and Section 6.4.
Formally, each rule r; € 'R maps question pat-
terns to a constraint predicate c; checkable against
SQL. Table 2 summarizes the ten constraint types
we support, with representative patterns and their
corresponding SQL checks. Complete pattern-
matching rules are provided in Appendix G.

4.3 Verification and Refinement

Given a synthesized SQL query, PV-SQL detects
potential errors through a multi-step pipeline’:

1. Syntax Check: PV-SQL first parses the SQL
and checks its syntax correctness without execu-
tion using the EXPLAIN command.?

2. Execution Check: PV-SQL then executes the
SQL against the database to catch runtime errors
(e.g., type mismatches, division by zero).

3. Constraint Check: Unlike syntax and execu-
tion errors that databases catch automatically, se-
mantic constraint violations require explicit ver-

This design enables early termination, where queries fail-
ing syntax validation skip database execution entirely, reduc-
ing unnecessary computation.

3https://www.geeksforgeeks.org/sql/explain-in-sql/

Algorithm 1 PV-SQL

Require: Question (), Evidence F, Database D,
Max probes K, Max repairs M

Ensure: SQL query S

1: // Database Probing

: H < () {Probe history}

: G < 0 {Grounding context}

: fort =1to K do

response <— LLM(Q, E, O, H)

if response.action = “done” then

break

end if

P < response.probe_sql

r¢ < Execute(D, p;)

H « HU{(p7)}

Update G with insights from 7,

: end for

: // Constraint Extraction

: C < ExtractConstraints(Q, E)

: // Verifiable Generation & Repair

: S« LLM(Q, E,G,0,0)

: form =1to M do

V' < Violations(S,C) U
ExecutionErrors(.S)

20: if V = () then

21: break

22: end if

23 S« LLM(Q,E,G,0,C,S,V)

24: end for

25: return S

R e A A S

e e e

ification. For each extracted constraint ¢; € C,
we verify the presence of the corresponding
SQL construct as specified in Table 2. Complete
verification rules are provided in Appendix H.

Then, PV-SQL repair constraint-violating SQL
by providing the LLM with the failed query, de-
tected violations, and original context (question,
evidence, grounding context from probing, and
schema). Each violation leads to a descriptive error
message that guides targeted repair. The process
terminates when no violations remain, or after a
maximum of 5 iterations to prevent infinite loop.

5 Experimental Setup
5.1 Benchmarks

We evaluate on three widely-used benchmarks.
First, we use the development set of Spider (Yu
et al., 2018), which includes 1034 tasks. Second,
we use the development set of a more challeng-

Type Example NL Patterns SQL Verification
Distinct unique, distinct, different DISTINCT, GROUP BY
Top-K top/first/best N ORDER BY + LIMIT
Ranking rank, position, standing RANK (), ROW_NUMBER ()
Count how many, number of COUNT (%)

Percent percentage, ratio, rate division (/) in SELECT
Sum total, sum, combined SUM()

Average average, mean, avg AVG()

Extreme max, min, largest, smallest MAX/MIN or LIMIT 1

ORDER BY date column
>, <, >=, <=

Temporal latest, earliest, newest
Compare more/less than, at least

Table 2: Simplified constraint extraction and correspond-
ing SQL verification rules.

ing benchmark, BIRD (Li et al., 2024), which in-
cludes 1534 tasks. Furthermore, NL questions in
BIRD are accompanied by evidence or hints that
provide domain knowledge. Finally, following re-
cent works (Sharma et al., 2025; Chen et al., 2025),
we also use Mini-Dev, a curated 500-example sub-
set of BIRD, developed from community feedback
to contain only unambiguous, high-quality queries
while preserving the original distribution of diffi-
culty levels and database domains.

5.2 Metrics

Execution Accuracy (EX) measures whether the
predicted SQL produces the same result as the gold
SQL when executed.

Valid Efficiency Score (VES) (Li et al., 2024)
combines execution accuracy with query efficiency,
penalizing slow queries. This is specific to BIRD
and Mini-Dev.

Token Consumption. Following the insight from
test-time scaling (Snell et al., 2024), more reason-
ing generally leads to better performance. How-
ever, token consumption impacts cost and latency
in practice. We report input tokens, output tokens,
and average task completion time per query to eval-
uate the performance-cost efficiency.

5.3 Baselines

We select seven open-sourced and training-free*
SOTA text-to-SQL methods. DAIL-SQL (Gao
et al., 2024) uses example selection and organi-
zation so LLMs see useful question—SQL pairs.
DIN-SQL (Pourreza and Rafiei, 2023) decom-
poses the Text-to-SQL task into smaller subprob-
lems and feeds intermediate solutions back to the
LLM, boosting reasoning and accuracy compared

*For a fair comparison.

to naive prompting. MAC-SQL (Wang et al.,
2024) is a multi-agent collaborative framework
where specialized agents (decomposer, selector,
refiner) work together with tools to generate and
refine SQL queries for more complex scenarios.
E-SQL (Caferoglu and Ozgiir Ulusoy, 2025) en-
hances Text-to-SQL by directly enriching the ques-
tion with relevant schema elements and candidate
predicates, improving schema linking and handling
ambiguous queries. TA-SQL (Qu et al., 2024) in-
corporates a task alignment strategy to reduce hal-
lucinations by leveraging experience from similar
tasks during schema linking and logical synthesis.
XiYan-SQL (Liu et al., 2025b) generates multiple
diverse SQL candidates via a multi-generator en-
semble and then selects the best one with a trained
selection model TS-SQL (Xu et al., 2025) adopts
a test-driven refinement method that synthesizes
test data and Python scripts that replicate the ex-
pected SQL behaviors.These scripts are executed
to validate the generated SQL and produce exe-
cution feedback, guiding the correction of SQL
errors. Since TS-SQL is not publicly available, we
replicate it using prompts reported in their paper.

5.4 Base LLMs

Our evaluation includes six base LLMs. For closed-
source models, we use GPT-40 and GPT-4.1-mini.
For open-source models, we use GPT-OSS-20B,
Gemma3-4B, Qwen3-4B, and Qwen3-0.6B, cov-
ering a range of model sizes from 0.6B to 20B
parameters. All models disable the thinking mode
for fair comparison and use a temperature of O for
reproducibility. In Section 6, we report results us-
ing GPT-40 as the default base model when cross-
model evaluation is not the focus. Additional re-
sults are provided in Appendix B.

Method BIRD Mini-Dev Spider
EX VES EX VES EX
GPT-40 52.22 56.99 49.40 54.57 71.08
+ DAIL-SQL 54.10 58.77 50.00 50.84 71.18
+DIN-SQL 54.80 56.75 51.00 54.79 69.05
+ MAC-SQL 58.70 62.77 57.80 64.65 72.73
+ E-SQL 59.10 64.65 57.40 64.23 75.63
+ TA-SQL 60.43 62,99 58.40 64.05 74.66
+ XiYan-SQL 57.60 63.96 5220 56.31 72.73
+ TS-SQL 57.37 6343 55.00 59.14 74.18
+ PV-SQL 65.12 75.55 63.80 74.63 77.66

Table 3: Execution accuracy (EX) and Valid Efficiency
Score (VES) of different methods across benchmarks.

6 Results

6.1 Main Results

Tables 4 and 3 present our main results. PV-SQL
consistently and significantly outperforms all base-
lines across different LLMs and benchmarks.

Cross-Benchmark Comparison As shown in
Table 3, PV-SQL consistently outperforms all
baselines across the three benchmarks, achieving
65.12% EX and 75.55% VES on BIRD, 63.80%
EX and 74.63% VES on Mini-Dev, and 77.66%
EX on Spider. The results indicate that PV-SQL
generalizes well across different tasks.

Cross-Model Comparison As shown in Table 4,
on BIRD, PV-SQL achieves 65.12% EX and
75.55% VES with GPT-40, substantially outper-
forming all baselines by at least 4.69 and 12.56
absolute points, respectively. With GPT-4.1-mini,
PV-SQL achieves 63.62% EX and 86.9% VES,
surpassing all baselines by at least 3.42 and 20.79
absolute points. Notably, PV-SQL with GPT-4.1-
mini achieves a remarkably high VES of 86.9%.

On open-weight models, PV-SQL also demon-
strates strong generalizability, achieving the best
performance across GPT-OSS-20B (59.45% EX,
61.99% VES), Qwen3-4B (49.61% EX, 51.47%
VES), and Gemma3-4B (39.50% EX, 42.39%
VES). However, we find that agentic methods do
not work well on weaker models, as they have
limited ability to process complex agentic work-
flows (Shen et al., 2024). For models smaller than
4B, most baselines reduce performance compared
to simple chain-of-thought prompting (ZS-CoT),
and Qwen3-0.6B is the only model where PV-SQL
does not achieve the best performance.

6.2 Evaluation by Task Difficulties

Table 6 breaks down performance by task difficulty
on BIRD. PV-SQL achieves consistent improve-
ments across all difficulty levels.

PV-SQL outperforms the best baseline at every
difficulty level: 71.03% vs. 67.57% (TA-SQL) on
Simple, 56.68% vs. 52.16% (TA-SQL) on Moder-
ate, and 54.48% vs. 45.52% (E-SQL) on Challeng-
ing queries. The improvement is most pronounced
on Challenging queries (+8.96% EX over E-SQL),
demonstrating that our probe-and-verify approach
is particularly effective for complex queries where
understanding data formats and verifying semantic
constraints are critical. We observe similar patterns
on Mini-Dev (see Appendix B).

Method GPT-40 GPT-4.1-mini GPT-0OSS-20B Gemma3-4B Qwen3-4B Qwen3-0.6B
EX VES EX VES EX VES EX VES EX VES EX VES
ZS-CoT 52.22 56.99 50.26 53.75 50.85 52.84 34.55 35.65 36.44 39.01 13.10 15.52
DAIL-SQL 54.10 58.77 50.40 55.05 49.39 48.22 27.32 2741 28.81 29.99 8.15 8.50
DIN-SQL 54.80 56.75 53.80 58.22 50.03 46.56 22.23 20.57 2344 22.51 6.84 7.13
MAC-SQL 58.70 62.77 55.60 60.62 53.59 51.50 37.70 37.36 39.76 40.88 11.60 12.95
E-SQL 59.10 64.65 54.80 60.95 53.95 53.05 26.20 29.14 41.66 46.38 12.84 13.06
TA-SQL 60.43 62.99 60.20 66.11 55.74 55.51 23.01 22.71 30.20 32.48 3.00 3.16
XiYan-SQL 57.60 63.96 51.60 58.99 35.98 38.03 20.79 30.69 36.40 38.31 6.60 6.93
TS-SQL 57.37 63.43 53.52 58.81 50.98 55.20 25.02 25.29 2740 3147 5.60 848
PV-SQL 65.12 75.55 63.62 86.9 59.45 61.99 39.50 42.39 49.61 51.47 11.08 15.39

Table 4: Execution accuracy (EX) and Valid Efficiency Score (VES) on the BIRD benchmark across different LLMs
and text-to-SQL methods. Underline represents the best performance among all conditions.

Method BIRD Mini-Dev Spider
EX VES EX VES EX

PV-SQL 65.12 75.55 63.80 74.63 77.66
w/o Probe 62.13 70.07 60.60 69.78 73.79
w/o Repair 61.80 74.87 60.80 71.07 76.98
LLM verify 59.13 6543 53.80 58.27 76.89

Table 5: Ablation Study of PV-SQL.

Method Simple Moderate Challenging

EX VES EX VES EX VES
GPT-40 59.35 63.34 42.89 50.56 36.55 37.07
+ DAIL-SQL 63.14 70.07 42.03 43.41 35.17 35.88
+ DIN-SQL 60.97 63.30 46.12 48.57 42.76 41.09
+ MAC-SQL 65.62 71.05 49.78 53.13 43.45 40.77
+ E-SQL 65.08 70.31 51.29 54.67 45.52 60.54
+ TA-SQL 67.57 70.38 52.16 55.05 41.38 41.22
+ XiYan-SQL 64.43 71.30 48.28 54.85 44.14 46.25
+ TS-SQL 63.24 63.43 50.22 52.95 42.76 44.71
+ PV-SQL 71.03 81.42 56.68 65.37 54.48 63.51

Table 6: Execution accuracy (EX) and Valid Efficiency
Score (VES) by task difficulty on BIRD.

6.3 Ablation Study

We conduct ablation studies to understand the
contribution of each component in PV-SQL. Ta-
ble 5 shows results when disabling the Probe (‘“w/o
Probe”) or Repair (“w/o Repair””) components, and
when replacing our rule-based verification with a
LLM-based verification (“LLM Verify”).

Effect of Probing. Removing database probing
leads to consistent performance degradation across
all benchmarks, with execution accuracy (EX)
dropping by 3.0 points on BIRD, 3.2 points on
Mini-Dev, and 3.9 points on Spider. VES also

Component Evaluation Metrics

Constraint Extraction Acc 99.39%
Repair Success Rate 90.82%
Repair Regression Rate 8.71%

Table 7: Component evaluation of PV-SQL verifica-
tion and repair. Constraint Extraction Acc: gold SQL
pass rate. Repair Success/Regression Rate: violations
resolved / constraints broken during repair.

drops substantially by 5.5 points on BIRD, 4.9
points on Mini-Dev, and 3.9 points on Spider.
These results confirm that database probing helps
the model understand data formats and value.

Effect of Repair. The verify-and-repair compo-
nent is also important. Removing it reduces EX
accuracy by 3.3% on BIRD, 3.0% on Mini-Deyv,
and 0.7% on Spider, indicating that the iterative re-
finement based on constraint violations is effective
for correcting semantic errors.

Rule-based vs. LLM-based Verification. We
compare our rule-based verification against an
LLM-based alternative, where we follow previous
works (Wang et al., 2023) to design the verifica-
tion prompts (Appendix F). As shown in Table 8,
rule-based verification achieves 6% higher execu-
tion accuracy while being 2 x faster and using 45%
fewer tokens, validating our design choice.

6.4 Component Evaluation

To better understand the performance of individual
components, we conduct detailed component eval-
uation on BIRD. Table 7 summarizes the results.

Constraint Extraction. We evaluate constraint
extraction accuracy by testing whether the gold

Method BIRD Mini-Dev

EX In Out Time EX In Out Time
ZS-CoT 522 787 191 1.94 494 1927 211 2.1
DAIL-SQL 54.1 2446 50 0.8 50.0 2247 60 0.9
DIN-SQL 54.8 26629 629 25.0 51.0 26630 694 25.0
MAC-SQL 58.7 6067 387 4.7 57.8 6203 380 4.7
E-SQL 59.1 28177 642 21.4 57.4 29986 708 24.4
TA-SQL 60.43 6305 242 53 58.4 6365 240 6.7
XiYan-SQL 57.6 1689 128 24 522 1734 142 1.7
TS-SQL 574 1803 310 3.6 55.0 1891 362 4.1
PV-SQL 65.1 3805 248 34 63.8 4270 315 4.1
-w/oProbe 62.1 1068 67 1.0 60.6 1191 81 14
- w/o Repair 61.8 3521 223 3.1 60.8 4261 276 4.3
- LLM verify 59.1 4887 478 6.6 53.8 4983 508 6.7

Table 8: Efficiency Analysis across benchmarks and
baselines. Execution accuracy (EX), input tokens, out-
put tokens, and average task completion time (seconds).

SQL satisfies all extracted constraints. If all con-
straints are satisfied, the extraction is reliable; oth-
erwise, the constraints may be irrelevant and po-
tentially mislead the generation. Our rule-based
method achieves 99.39% accuracy, suggesting that
constraints used in PV-SQL are highly reliable.

Repair. We measure the repair performance by
Repair Success Rate (violations successfully ad-
dressed) and Regression Rate (previously satisfied
constraints broken). PV-SQL achieves a 90.82%
success rate with only 8.71% regression rate, show-
ing that the repairing reliably corrects errors with-
out introducing new errors in most cases.

66 .PV-SQL
64
w/o Probe /o Rebai
§ 62 V wi/o epalr<
360 Lt E-SQL
verr
5 TsS-saQL Ry
o 58 L
2 %
= 56 -
- oin-saLt
54 DAIL-SQL -
52 ZST-CoT
200 500 1K 2K 4K

Token Consumption

Figure 3: Accuracy vs. token consumption® on BIRD.

6.5 Efficiency Analysis

Table 8 reports detailed efficiency metrics (to-
ken consumption, latency), while Figure 3 visu-
SToken consumption is computed as %xinput + output

tokens, reflecting API pricing where input tokens cost ~8x
less than output (https://openai.com/api/pricing/).

N
o
o

v 313 [Oljiginal
S 300 With PV-SQL
w 142% 16% 223 119%
© 200 182 185 173 180
9]
o
€ 100
=
0
Database Question Synthesis
Misinterpretation Misinterpretation Failure

Figure 4: Error distribution before and after using PV-
SQL on BIRD.

alizes the accuracy-efficiency landscape. PV-SQL
achieves the best accuracy (65.1% on BIRD, 63.8%
on Mini-Dev) with moderate token consumption.
In contrast, DIN-SQL and E-SQL consume 7-8 x
more tokens and take 6—7x longer, yet achieve
lower accuracy. The efficiency stems from our rule-
based verification, which avoids expensive LLM
calls. Replacing it with “LLM verify” increases
tokens significantly while decreasing accuracy by
6%. Notably, removing Probe achieves the best
efficiency with only a 3% drop in accuracy.

6.6 Error Analysis

To understand how PV-SQL reduces errors, we
apply the same error classification method in Sec-
tion 3, on the BIRD benchmark. Figure 4 shows
the error distribution before and after applying PV-
SQL. Specifically, there is a 42% reduction in
database misinterpretation errors, validating our
hypothesis that probing helps ground the model in
actual database content. Synthesis failures also de-
crease by 19%, demonstrating that the verify-and-
repair loop effectively catches semantic constraint
violations. Question misinterpretation shows a
modest 6% reduction, which is expected since this
error type often stems from inherent ambiguity in
natural language rather than missing context. To
demonstrate how PV-SQL addresses errors, we
include a case study in Appendix A.

7 Conclusion

We presented PV-SQL, an agentic method for
robust text-to-SQL generation. By probing the
database to ground the input context and extracting
explicit constraint to verify the output, PV-SQL
addresses complementary sources of error. Exper-
iments demonstrate that probing and verification
can significantly and consistently enhance text-to-
SQL performance, with less token consumptions.

https://openai.com/api/pricing/

Limitations

Our constraint extraction rules were developed
through empirical observation of common text-to-
SQL patterns. While the current rule set covers
frequently occurring constraints (e.g., aggregation,
sorting, filtering), it does not exhaustively capture
all possible semantic requirements. Extending the
rule set to handle more nuanced or domain-specific
constraints remains an avenue for future work.
Additionally, our empirical study about text-to-
SQL error analysis rely on LLM-as-a-judge. While
our human annotation shows it is reliable and it
provides scalable evaluation, it introduces potential
inaccuracies. The automated assessments should
be interpreted as estimates rather than ground truth.

References

Arian Askari, Christian Poelitz, and Xinye Tang.
2024. MAGIC: Generating self-correction guide-
lines for in-context text-to-SQL. arXiv preprint
arXiv:2406.12692.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2024. E-SQL:
Direct schema linking via question enrichment in
text-to-SQL. arXiv preprint arXiv:2409.16751.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2025. E-sql:
Direct schema linking via question enrichment in
text-to-sql. Preprint, arXiv:2409.16751.

Jipeng Cen, Jiaxin Liu, Zhixu Li, and Jingjing Wang.
2024. SQLFixAgent: Towards semantic-accurate
SQL generation via multi-agent collaboration. arXiv
preprint arXiv:2406.13408.

Saumya Chaturvedi, Aman Chadha, and Laurent Bind-
schaedler. 2025. Sqgl-of-thought: Multi-agentic
text-to-sql with guided error correction. Preprint,
arXiv:2509.00581.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang
Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
2022. Codet: Code generation with generated tests.
Preprint, arXiv:2207.10397.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. Preprint, arXiv:2304.05128.

Zui Chen, Han Li, Xinhao Zhang, Xiaoyu Chen, Chun-
yin Dong, Yifeng Wang, Xin Cai, Su Zhang, Ziqi Li,
Chi Ding, Jinxu Li, Shuai Wang, Dousheng Zhao,
Sanhai Gao, and Guangyi Liu. 2025. Rubiksql: Life-
long learning agentic knowledge base as an industrial
nl2sql system. Preprint, arXiv:2508.17590.

Nadezhda Chirkova, Tunde Oluwaseyi Ajayi, Seth
Aycock, Zain Muhammad Mujahid, Vladana Per-
li¢, Ekaterina Borisova, and Markarit Vartampetian.

2025. Llm-as-a-qualitative-judge: automating error
analysis in natural language generation. Preprint,
arXiv:2506.09147.

Zhongjun Ding, Yin Lin, and Tianjing Zeng. 2025. Am-
bisql: Interactive ambiguity detection and resolution
for text-to-sql. Preprint, arXiv:2508.15276.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
DAIL-SQL: Optimized llm prompt for text-to-SQL.
In Proceedings of the VLDB Endowment, volume 17,
pages 950-961.

Yue Gong, Chuan Lei, Xiao Qin, Kapil Vaidya, Bal-
akrishnan Narayanaswamy, and Tim Kraska. 2025.
Sqlens: An end-to-end framework for error de-
tection and correction in text-to-sql. Preprint,
arXiv:2506.04494.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. Preprint,
arXiv:2310.01798.

Jihyung Lee, Jin-Seop Lee, Jachoon Lee, YunSeok Choi,
and Jee-Hyong Lee. 2025. DCG-SQL: Enhancing
in-context learning for text-to-SQL with deep con-
textual schema link graph. In Proceedings of the
63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
15397-15412, Vienna, Austria. Association for Com-
putational Linguistics.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings
of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence and
Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAT'23/TAAT'23/EAAT’23.
AAALI Press.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chen-Chuan Chang, Fei Li, Bei Hui,
and Yongbin Li. 2024. Can LLM already serve as
a database interface? a Big bench for large-scale
database grounded text-to-SQLs. In Advances in
Neural Information Processing Systems, volume 36.

Zhenwen Li and Tao Xie. 2024. Using LLM to select
the right SQL query from candidates. arXiv preprint
arXiv:2401.02115.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuxin Zhang, Ju Fan, Guoliang Li, Nan Tang,
and Yuyu Luo. 2025a. A survey of text-to-sql in the
era of llms: Where are we, and where are we going?
Preprint, arXiv:2408.05109.

Yifu Liu, Yin Zhu, Yingqi Gao, Zhiling Luo, Xiaoxia
Li, Xiaorong Shi, Yuntao Hong, Jinyang Gao, Yu Li,

https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2509.00581
https://arxiv.org/abs/2509.00581
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2508.17590
https://arxiv.org/abs/2508.17590
https://arxiv.org/abs/2508.17590
https://arxiv.org/abs/2506.09147
https://arxiv.org/abs/2506.09147
https://arxiv.org/abs/2508.15276
https://arxiv.org/abs/2508.15276
https://arxiv.org/abs/2508.15276
https://arxiv.org/abs/2506.04494
https://arxiv.org/abs/2506.04494
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://doi.org/10.18653/v1/2025.acl-long.748
https://doi.org/10.18653/v1/2025.acl-long.748
https://doi.org/10.18653/v1/2025.acl-long.748
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109

Bolin Ding, and Jingren Zhou. 2025b. Xiyan-sql:
A novel multi-generator framework for text-to-sql.
Preprint, arXiv:2507.04701.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2024. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023.
Lever: learning to verify language-to-code generation
with execution. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. Preprint, arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Preprint, arXiv:2405.15307.

Md Mahadi Hassan Rahaman and Mehmet Emre Gursoy.
2024. Evaluating sql understanding in large language
models. Preprint, arXiv:2410.10680.

Minseok Ren, Sijie Jin, Soobin Son, Yeonsu Kwon,
Dong-Gun Lee, Hwi-Jun Yang, and Kyomin Jung.
2024. Purple: Making a large language model a
better sql writer. Preprint, arXiv:2403.20014.

Chetan Sharma, Ramasuri Narayanam, Soumyabrata
Pal, Kalidas Yeturu, Shiv Kumar Saini, and Koyel
Mukherjee. 2025. TTD-SQL: Tree-guided token de-
coding for efficient and schema-aware SQL gener-
ation. In Proceedings of the 2025 Conference on
Empirical Methods in Natural Language Processing:
Industry Track, pages 1287-1298, Suzhou (China).
Association for Computational Linguistics.

Jiawei Shen, Chengcheng Wan, Ruoyi Qiao, Jiazhen
Zou, Hang Xu, Yuchen Shao, Yueling Zhang, Weikai
Miao, and Geguang Pu. 2025. A study of in-
context-learning-based text-to-sql errors. Preprint,
arXiv:2501.09310.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024. Small LLMs are weak tool learners: A
multi-LLM agent. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 16658—16680, Miami, Florida, USA.
Association for Computational Linguistics.

10

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. Preprint, arXiv:2405.16755.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Wenbo Xu, Haifeng Zhu, Liang Yan, Chuanyi Liu, Peiyi
Han, Shaoming Duan, and Jeff Z. Pan. 2025. TS-
SQL: Test-driven self-refinement for text-to-SQL. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2025, pages 2864-2889.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS °23,
Red Hook, NY, USA. Curran Associates Inc.

https://arxiv.org/abs/2507.04701
https://arxiv.org/abs/2507.04701
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2410.10680
https://arxiv.org/abs/2410.10680
https://arxiv.org/abs/2403.20014
https://arxiv.org/abs/2403.20014
https://doi.org/10.18653/v1/2025.emnlp-industry.90
https://doi.org/10.18653/v1/2025.emnlp-industry.90
https://doi.org/10.18653/v1/2025.emnlp-industry.90
https://arxiv.org/abs/2501.09310
https://arxiv.org/abs/2501.09310
https://doi.org/10.18653/v1/2024.emnlp-main.929
https://doi.org/10.18653/v1/2024.emnlp-main.929
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171

A Case Study

Question: List the top 3 unique product categories by
percentage of orders from California customers that were
shipped late in 2023.

[Probe]

Probe 1:

SELECT DISTINCT state FROM customers LIMIT 5
Result: [(CCA”,), OCNY’,)), CTX’,), ...]
Learned:

State stored as 2-letter codes

Probe 2:

SELECT ship_date,
LIMIT 3

Result: [(?2023-01-15", ’2023-01-10°), ...]
Learned:

Dates as YYYY-MM-DD

“Late” means ship_date > required_date

required_date FROM orders

[Generate]
SELECT p.category, CAST(SUM(CASE WHEN
o.ship_date > o.required_date THEN 1 ELSE

@ END) AS REAL) * 100 / COUNT(*) FROM orders o
JOIN customers c ON o.customer_id = c.id JOIN
products p ON o.product_id = p.id WHERE c.state
= "CA’ GROUP BY p.category

[Verify]
Extracted Constraints:
v Percentage calculation required
v DISTINCT or GROUP BY for uniqueness
X “top 3” requires ORDER BY ... LIMIT 3 — Violation
X “2023” must appear in SQL — Violation

[Repair]

SELECT p.category, CAST(SUM(...) AS REAL) =
100 / COUNT(*) AS late_pct FROM orders o JOIN
customers c¢ JOIN products p WHERE
c.state = CA’ AND strftime(’%Y’, o.order_date)

72023’ GROUP BY p.category ORDER BY late_pct
DESC LIMIT 3

[Verify]

v All constraints satisfied

Figure 5: Case study showing how probing discovers
value formats and verification catches multiple semantic
errors (missing year filter, missing LIMIT).

Figure 5 demonstrates how probing and verifi-
cation work together in PV-SQL. The question
asks for the top 3 product categories by late ship-
ment percentage for California customers in 2023.
Through Probe, the agent discovers that states
are stored as 2-letter codes and dates follow the
YYYY-MM-DD format, revealing that “late” means
ship_date > required_date. Without probing,
these value formats would be difficult to infer from
schema alone.

Verify extracts four constraints from the question:
percentage calculation, uniqueness (via GROUP
BY), top-3 limit, and year filter. The initial SQL
satisfies two constraints but misses the ORDER BY

11

... LIMIT clause and the 2023 filter. Repair fixes
both violations (highlighted in green), and a final
verification confirms all constraints are satisfied.
This iterative process reduces the burden on the
agent to produce a perfect query in one pass.

Constraint Trigger Patterns

Distinctness “unique”, “distinct”, “different”, “no
duplicate”, “deduplicate”

Top-K “top N7, “first N”, “bottom N, “high-
est N, “lowest N, “best N, “worst
N7

Ranking “rank”, “ranking”, “position”,
“placed”, “standing”

Counting “how many”, “count”, “number of”,
“total number”, “quantity of”

Percentage “percentage”, “percent”, “%”, “ratio”,
“rate”, “proportion”, “fraction of”

Summation “total”, “sum”, “overall”, “combined”,
“aggregate”

Average “average”, “mean”, “avg”, “on aver-
age”, “typical”

Extreme “maximum”, “minimum”, ‘“max”,
“min”, “largest”, “smallest”, “most”,
“least”, “highest”, “lowest”

Temporal “latest”, “earliest”, ‘“most recent”,
“newest”, “oldest”, “last”, “first” (with
time context)

Comparison “more than”, “less than”, “greater

“«

than”, “fewer than”, “at least”, “at

most”, exceeds”

”

no more than”,

Table 9: Constraint extraction rules mapping question
patterns to semantic constraints. Patterns are matched
case-insensitively against the question text.

B Additional Experiment Results

This section contains additional experimental re-
sults that complement the main paper. We provide:
(1) baseline LLM performance by difficulty across
all models, (2) cross-benchmark comparison with
GPT-4.1-mini to complement Table 3, (3) perfor-
mance breakdown by difficulty on Mini-Dev with
GPT-40 to complement Table 6, and (4) perfor-
mance breakdown by difficulty for GPT-4.1-mini.

C Prompts Used in PV-SQL

We present the four prompts used in PV-SQL.:
Probe, Generation, Repair, and Error Analysis.
C.1 Probe Prompt

The Probe prompt guides the LLM to generate
probing SQL queries that reveal database content,

Constraint SQL Verification Criteria

Distinctness Presence of DISTINCT keyword in
SELECT, or GROUP BY clause that im-

plies uniqueness

Top-K Presence of LIMIT N clause where
N matches the requested count; com-

bined with ORDER BY for “top” queries

Ranking Presence of window function: RANK (),
DENSE_RANK(), or ROW_NUMBER()

with OVER clause

Counting Presence of COUNT (%)

COUNT (column) in SELECT clause

or

Percentage Presence of division operator (/) or
multiplication by 100.0 in SELECT; of-

ten with CAST for float division

Summation Presence of SUM(column) aggregation

function in SELECT clause

Average Presence of AVG(column) aggregation

function in SELECT clause

Presence of MAX() or MIN() function;
or ORDER BY with LIMIT 1 pattern

Extreme

ORDER BY clause on date/time column;
direction (ASC/DESC) matches “earli-
est”/“latest”

Temporal

Comparison WHERE or HAVING clause with compar-
ison operators (>, <, >=, <=) matching

the constraint

Table 10: Constraint verification rules. Each rule checks
for specific SQL constructs that satisfy the semantic
requirement.

value formats, and data distributions not apparent
from schema alone. Given the question, evidence,
schema, and results from prior probes, it outputs a
JSON object containing a probe SQL query and dis-
covered value mappings. This grounds the text-to-
SQL task by understanding actual database content
before generating the final query.

C.2 Generation Prompt

The Generation prompt produces the initial SQL
query using enriched context from the probing
phase. It takes the question, evidence, schema,
value mappings, probe observations, and extracted
constraints as input, and outputs a single SQL
query that leverages the grounded understanding
of database content.

C.3 Repair Prompt

The Repair prompt fixes SQL queries that vio-
late constraints detected by the rule-based verifier.
Given the original context, the faulty SQL, and
specific violation messages from the verifier, it out-
puts a corrected SQL query. This enables iterative

12

refinement by addressing specific constraint viola-
tions rather than regenerating from scratch.

D Error Analysis Prompt

The Error Analysis prompt is used for post-hoc
analysis of failed predictions, classifying errors to
understand model weaknesses. Given the question,
evidence, schema, ground truth SQL, predicted
SQL, and execution errors, it outputs a JSON object
containing the error type, reasoning, and specific
issue. This enables systematic categorization of
errors for comparative analysis across methods.

E Probe Quality Evaluation Prompt

This section presents the prompt used for LLM-
based evaluation of probe quality in Section 6. We
use GPT-40 as the judge to assess each probe query
along three dimensions: relevance to the question,
whether it provides new insights beyond schema
information, and redundancy with previous probes.

F LLM-based Verification Prompts

This section presents the prompts used in the “LLM
verify” ablation variant described in Section 6.3. In
this variant, we replace the rule-based constraint
extraction and verification with LLM-based ap-
proaches. While this approach is more flexible, it
achieves lower accuracy and higher cost compared
to rule-based verification.

F.1 LLM-based Constraint Extraction

The LLM-based constraint extraction prompt asks
the model to analyze the question and extract se-
mantic constraints that the SQL query must satisfy.
Unlike the rule-based approach (Section G), this
relies on the LLM’s understanding to identify re-
quirements.

F.2 LLM-based SQL Verification

The LLM-based verification prompt asks the model
to verify whether a generated SQL query correctly
satisfies all requirements from the original question.
This replaces the rule-based verification that checks
for specific SQL constructs.

G Constraint Extraction Rules

This section expands on the constraint extraction
described in Section 4.2. Table 9 presents the com-
plete set of pattern-matching rules for extracting
semantic constraints from natural language ques-
tions. Each rule maps question patterns (keywords

or phrases) to a constraint type that can be verified
against the generated SQL.

H Constraint Verification Rules

This section expands on the violation detection
described in Section 4.3. Table 10 presents the ver-
ification rules that check whether a generated SQL
query satisfies each extracted constraint. Verifica-
tion is performed by parsing the SQL and checking
for the presence of required constructs.

We implement verification using SQL parsing
with the sqlparse library. For each constraint type,
we traverse the parsed AST to check for the re-
quired tokens or clauses. The verifier returns a list
of violated constraints with descriptive error mes-
sages (e.g., “Question asks for unique values but
SQL lacks DISTINCT or GROUP BY™).

13

Method BIRD Mini-Dev Spider

EX VES EX VES EX

GPT-4.1-mini 50.26 53.75 49.40 54.86 56.99

+ DAIL-SQL 53.80 62.71 50.40 55.05 58.77
+DIN-SQL 5550 62.38 53.80 58.22 56.75
+MAC-SQL 5830 63.97 55.60 60.62 62.77
+ E-SQL 57.80 65.03 54.80 60.95 64.65
+ TA-SQL 61.10 69.62 60.20 66.11 68.83
+ XiYan-SQL 5590 63.92 51.60 58.99 63.96
+ TS-SQL 53.52 58.81 50.20 54.87 63.43
+ PV-SQL 63.62 72.78 60.20 67.15 75.55

Table 11: Cross-benchmark comparison with GPT-4.1-mini as the base model.

Method Simple ~ Moderate Challenging

EX VES EX VES EX VES

GPT-40 60.81 64.27 48.00 57.00 36.27 34.53

+ DAIL-SQL 66.89 68.13 47.60 48.24 31.37 32.12
+DIN-SQL 64.86 65.04 48.40 55.42 37.25 38.37
+ MAC-SQL 72.30 82.81 55.20 62.60 43.14 43.34
+ E-SQL 69.59 84.82 55.60 58.94 44.12 47.32
+ TA-SQL 72.97 81.91 57.60 62.82 39.22 41.17
+ XiYan-SQL 65.54 67.30 50.00 56.58 38.24 39.72
+ TS-SQL 67.57 76.82 54.00 55.93 39.22 41.37
+ PV-SQL 76.35 87.28 62.80 76.21 48.04 52.40

Table 12: Performance by difficulty on Mini-Dev with GPT-4o.

Method Simple Moderate Challenging

EX VES EX VES EX VES

GPT-4.1-mini 58.05 61.68 39.44 44.29 35.17 33.42

+ DAIL-SQL 61.30 74.23 44.60 47.74 35.90 37.20
+DIN-SQL 61.80 69.65 48.30 54.45 37.90 41.35
+ MAC-SQL 65.30 73.68 47.60 50.84 48.30 44.11
+ E-SQL 64.00 74.42 48.50 51.70 47.60 47.78
+ TA-SQL 68.10 78.22 51.90 57.59 45.50 53.22
+ XiYan-SQL 63.40 72.77 46.10 52.25 39.30 44.81
+ TS-SQL 60.32 68.66 45.26 45.77 36.55 37.69
+ PV-SQL 69.73 79.21 56.47 66.46 47.59 51.95

Table 13: Performance by difficulty on BIRD with GPT-4.1-mini.

Method Simple Moderate Challenging

EX VES EX VES EX VES

GPT-4.1-mini 63.51 73.28 48.40 53.28 31.37 31.98

+ DAIL-SQL 67.60 78.02 47.60 50.47 32.40 32.96
+ DIN-SQL 64.20 73.58 54.80 57.33 36.30 38.13
+MAC-SQL 70.90 78.36 52.40 58.34 41.20 40.47
+ E-SQL 66.20 76.53 54.40 58.99 39.20 43.13
+ TA-SQL 76.40 86.07 58.40 64.63 41.20 40.77
+ XiYan-SQL 65.50 76.20 49.60 55.63 36.30 42.26
+ TS-SQL 62.84 74.13 48.80 50.61 35.29 37.35
+ PV-SQL 73.65 86.52 59.20 64.04 43.14 46.68

Table 14: Performance by difficulty on Mini-Dev with GPT-4.1-mini.

14

Difficulty GPT-40 GPT-4.1-mini GPT-OSS-20B Gemma3-4B Qwen3-4B Qwen3-0.6B

EX VES EX VES EX VES EX VES EX VES EX VES
Simple 65.00 70.06 60.80 67.88 63.57 66.16 4422 45.58 44.97 49.86 18.70 22.03
Moderate 45.30 48.74 42.70 46.18 45.04 47.35 21.12 21.88 23.49 22.74 496 6.14
Challenging 38.60 40.35 33.10 34.41 40.00 40.07 15.86 16.36 23.45 21.90 345 4.02
All 56.50 60.80 52.70 58.16 55.74 58.00 34.55 35.65 36.44 39.01 13.10 15.52

Table 15: ZS-CoT performance by difficulty level across different LLMs on BIRD.

Difficulty GPT-40 GPT-4.1-mini

EX VES EX VES
Simple 60.81 6427 6690 79.65
Moderate 48.00 57.00 4840 54.67
Challenging 36.27 34.53 31.40 32.99
All 4940 5457 5040 57.64

Table 16: ZS-CoT performance by difficulty level on Mini-Deyv..

Prompt 1: Probe

Background

You are helping to solve a text-to-SQL problem.
Before writing the final SQL query, you can run
exploratory “probe” queries on the database to
understand its content. Probes help discover
addition knowledge that are not apparent from
the schema alone.

Task

Analyze the question and schema, then decide
whether to request a probe query or proceed to
SQL generation.

Context

Question: {question}

Evidence (hints provided with the question):
{evidence}

Database Schema: {schema}

Prior Probes (queries you already ran and their
results): {prior_probe_results}

Prompt 2: Generation

Task
Write a SQL query to answer the question based
on the provided context.

Context

Question: {question}

Evidence (hints provided with the question):
{evidence}

Database Schema: {schema}

Probe Observations (results from exploratory
gueries run on the database, showing actual
values and formats):

{probe_results}

Instructions

- If you need more information, generate a
probe query (e.g., SELECT DISTINCT column FROM
table LIMIT 5).

- If you have enough information, set action to
"done".

- Record any value mappings you discover (e.g.,
"California” maps to "CA" in the database).

Output Format (JSON)
{
"action”: "probe" | "done",
"probe_sql”: "SELECT ...",
"relevant_columns”: {"table":
"col2"1},
"value_mappings"”: {"term_in_question":
"exact_db_value"}

3

["coll”,

Extracted Constraints (requirements derived
from the question, e.g., needs DISTINCT, needs
LIMIT, needs COUNT):

{constraints}

Rules

- Write a single SQL statement only.

- Return only what is asked (no extra columns).
- Follow evidence/hints strictly when provided.
- Use exact database values discovered from
probes (e.g., use "CA" not "California” if
probes showed state codes).

Output
SQL query only.

15

Prompt 3: Repair

Background

A SQL query was generated but failed
verification. The verifier checks for
constraint violations (e.g., missing DISTINCT
when the question asks for unique values,
missing LIMIT for top-k queries) and execution
errors (e.g., invalid column names, syntax
errors).

Task
Fix the SQL query to resolve the detected
violations.

Context
Question: {question}
Evidence (hints provided with the question):

Prompt 4: Error Analysis

Background

You are analyzing why a text-to-SQL model
failed to generate the correct query. By
comparing the predicted SQL with the ground
truth, you will classify the root cause of the
error to help understand model weaknesses.

Task
Analyze the failure and classify it into one
error category.

Context

Question: {question}

Evidence (hints provided with the question):
{evidence}

Database Schema: {schema}

Ground Truth SQL (the correct answer):
{gold_sql}

Predicted SQL (what the model generated):
{predicted_sql}

Execution Error (if the predicted SQL failed to
run): {exec_error}

Error Types

16

{evidence}
Database Schema: {schema}

Original SQL (the query that failed
verification):
{original_sql}

Violations Detected (errors found by the
verifier):
{violation_messages}

Instructions

- Carefully address each violation listed
above.

- Output the corrected SQL only (no
explanation).

Classify into exactly one category:

1. DATABASE_MISINTERPRETATION:

Failed to understand database content, schema,
or relationships.

Examples: wrong table/column, misunderstood
foreign keys or data formats.

2. QUESTION_MISINTERPRETATION:

Misinterpreted the question.

Examples: wrong filter conditions,
misunderstood aggregation requirements.

3. SQL_SYNTHESIS_FAILURE:

Understood context correctly but failed to
generate correct SQL.

Examples: wrong JOIN syntax, missing clauses,
syntax errors.

Output Format (JSON)

{
"error_type": "...",
"reasoning”: "...",
"specific_issue”": "..."
}

Prompt 5: Probe Quality Evaluation

Background

You are evaluating the quality of probe queries
for text-to-SQL grounding. Probes are
exploratory SQL queries that help understand
database content before generating the final
query.

Task
For each probe query, assess three aspects:

1. RELEVANCE: Is this probe relevant to
answering the question? (yes/no)
2. NEW_INSIGHT: Does this probe provide
information not available from schema alone?
(yes/no)

- Schema-only info: table/column names, data
types, foreign keys

- New insights: actual data values, data
formats, value distributions, NULL patterns

Prompt 6: LLLM-based Constraint Extraction

Task

You are a SQL requirements analyst. Extract
semantic constraints from the natural language
question and evidence.

Context
Question: {question}
Evidence: {evidence}

Instructions

Focus on identifying:

- DISTINCT requirements (unique, different,
distinct values)

- Aggregation needs (count, sum, avg, max, min)
- Ordering/ranking requirements (top N,
highest, lowest, oldest, newest)

- Percentage/ratio calculations

- Comparison operators (greater than, less
than, equal to)

- Grouping requirements

- NULL handling needs

3. REDUNDANT: Does this probe duplicate
information from previous probes? (yes/no)

Context

Question: {question}
Evidence: {evidence}

Schema: {schema}

Probes to evaluate: {probes}

Output Format (JSON)
{
"evaluations”: [
{"probe_index": 0, "relevant”: true/false,
"new_insight"”: true/false, "redundant”:
true/false,
"reasoning”:

” u}
oo y

- Any specific value filtering mentioned
Output Format (JSON)

{
"constraints”: [
{
"type":
"distinct|limit|aggregation]|...",
"description”: "human-readable
description”,

"sql_hint": "what SQL construct should
be used”
}
]:
"output_requirements”: {
"expected_columns”: ["coll"”, "col2"],
"expected_type":
"single_value|list|count]|..."
3
}

17

Prompt 7: LLM-based SQL Verification

Task

You are a SQL verification expert. Verify if
the generated SQL query correctly satisfies
all requirements from the original question.

Context

Question: {question}

Evidence: {evidence}

Extracted Constraints: {constraints}
Schema: {schema}

Generated SQL: {sql?}

Verification Checklist

Verify ALL aspects:

1. Structural validity: Is it a single valid
SELECT/WITH statement?

2. Semantic correctness: Does the SQL return
what the question asks?

3. Filter correctness: Are all
filters/conditions applied?

4. Aggregation correctness: Is aggregation
correct (COUNT vs COUNT(DISTINCT))?

5. Ordering correctness: Is ordering/limit

18

correct for “top N” queries?

6. JOIN correctness: Are JOINs correct and
complete?

7. Output format: Is the output format correct?

Instructions
Be thorough but avoid false positives. Only
flag issues that are clearly problems.

Output Format (JSON)

{
"is_valid"”: true/false,
"issues”": [
{
"severity"”: "error|warning”,
"category”:
"syntax|semantic|missing_constraint]|...",
"description”: "detailed description of
the issue”,
"suggestion”: "how to fix it”
3
1
3

	Introduction
	Related Work
	Text-to-SQL Methods
	Context Enrichment
	Verification-Driven Refinement

	Problem Statement
	Task Definition
	Empirical Study on Error Distribution

	Method
	Database Probing
	Constraint Extraction
	Verification and Refinement

	Experimental Setup
	Benchmarks
	Metrics
	Baselines
	Base LLMs

	Results
	Main Results
	Evaluation by Task Difficulties
	Ablation Study
	Component Evaluation
	Efficiency Analysis
	Error Analysis

	Conclusion
	Case Study
	Additional Experiment Results
	Prompts Used in PV-SQL
	Probe Prompt
	Generation Prompt
	Repair Prompt

	Error Analysis Prompt
	Probe Quality Evaluation Prompt
	LLM-based Verification Prompts
	LLM-based Constraint Extraction
	LLM-based SQL Verification

	Constraint Extraction Rules
	Constraint Verification Rules

